

Fundamentals of Robotics with the MHJF

COURSE OUTLINE

Catalogue Number	77-5001-0000
Category	Robotics
Duration	15 Hours
Additional Content with Hardware Package	10 Hours
Software Supplied	RoboCell Robotic Simulation Software

¹ Note: Activities written in italics require hardware. See the Course Materials document and the individual lab activity documents for details.

Course Introduction

Activity 1: Introduction to Robotics

What is a Robot?

History of the Industrial Robot

Applications of Industrial Robots

Flexible Manufacturing Systems

Activity 2: How Robots Work

Robotic System Components

Types of Robot Joints

Types of Robots

Manipulator Driving Axes

Robotic Control Systems

Programming Language: RoboCell Robotic Software

The FS100 Programming Pendant

Activity 3A: Using Robotic Control Software: Part 1

Simulation Software

Task: Running RoboCell and Opening a Project

RoboCell Window Components

3D Image Window

Task: Adjusting the View of the Robot Workcell

Activity 3B: Using Robotic Control Software: Part 2

Running Programs

Task: Running a Sample Program

Manipulating the Robot

Task: Robot Working Limits

Lab Activity A: Getting Started

Activity 4: Recording Robot Positions

Homing

Task: Running RoboCell and Opening a Project

Recording Positions

Executing Movements

Joint Coordinate System

Cartesian Coordinate System

Jog Control Window

Task: Manipulating the Robot in the XYZ Coordinate System

Encoders and the Data Dashboard

Lab Activity B: Teaching a Job

Lab Activity C: Linear & Circular Motion

Activity 5: Programming a Simple Pick and Place Task

Record and Teach Commands

Task: Running RoboCell and Opening a Project

Moving a Cube by Recording Four Positions

Task: Recording and Teaching Positions

Programming Tools

Task: Writing a Simple Robot Program

Task: Saving a Robot Project

Task: Running a Robot Program

Lab Activity D: Position Variables

Lab Activity E: Operating the Gripper

Activity 6: Basic Robotic Programming Tools

RoboCell Program Structure

Object Inspection Task

Task: Recording Positions

Task: Programming

Task: Adding Remarks to a Program

The Set Variable

Task: Adding Variables to a Program

Debugging Commands

Task: Adding Debugging Tools and Delays to a Program

Making Commands Non-Executable

Task: Making Ring Bell Commands Non-Executable

Lab Activity F: The Control Sub-menu

Lab Activity G: General Administration

Activity 7: Block Alignment Project

Aligning a Block

Task: Recording Positions

Task: Programming

Task: Running and Evaluating the Program

Task: Programming a Continuous Cycle

Lab Activity H: Tool Coordinates

Activity 8: Feeders and Templates

Introduction to Feeders and Templates

Using a Feeder and Template in a Production Process

Task: Running RoboCell

Task: Recording Positions

Turning Outputs On and Off

Task: Programming and Running the Program

Task: Using a Template to Move Parts in a Workcell

Lab Activity I: Interference Areas

Activity 9: Roll, Pitch, and Yaw

Degrees of Freedom

Task: Running RoboCell and Loading the Project

Adjusting the Roll

Task: Modifying Rx, Ry and Rz Task: Running the Program

Lab Activity J: User Coordinates

Activity 10: Programming the Robot to Execute Linear Movements

Robot Machine Operators

Task: Recording Two End Positions and Running the Program

Controlling the Robot Trajectory

Task: Recording a Middle Position

Linear Movement

Task: Observing the Effects of the Go Linear Command

Task: Observing the Encoder Values for a Linear Trajectory

Activity 11: Programming the Robot to Execute Circular Movements

Controlling the Robot Trajectory

Using the Go Linear to Position and Go Circular to Position

Task: Recording Positions to Write the Letter B

Task: Programming the Robot to Write B

Task: Running the Program

Lab Activity K: Position Level

Activity 12: Final Project: Drawing a House

Drawing a House

Task: Recording Positions

Task: Programming the Robot to Draw a House

Task: Running and Evaluating the Program

Challenge

Task: Programming and Running the Challenge

Additional Practice (Hardware Optional)

Sample Activities for Programming

Conclusion

The Structure and Relationship of Jobs

Master Jobs

Collision Detection

Introduction to the Practical Exam

Practical Exam