

# **Process Control: Flow**

| Catalogue Number | 77-3043-0002    |
|------------------|-----------------|
| Category         | Process Control |
| Duration         | 15 Hours        |

#### **Activity 1: Introduction to Process Control**

What is Process Control?

What is a Control Mechanism?

Flow Rate

What is a Controller?

Manual and Automatic Flow Control Systems

The Need for Controlling Systems

# **Activity 2: Introduction to ProcessMotion Simulation Software**

**ProcessMotion Software** 

**ProcessMotion Panel** 

Simulation Software

Manipulating the ProcessMotion Panel Display

Task: Running ProcessMotion and Opening Multiple Displays

**Review of Process Control** 

Task: Running an Experiment

**Output Analysis** 

Task: Analyzing the Output Graph

Experimenting with an Ineffective Controller

Interpreting the Output Graph

**Experimenting with an Effective Controller** 

Task: Experimenting with an Effective Controller

Interpreting the Output Graph



#### **Activity 3: Block Diagrams and Gain**

**Systems and Control Systems** 

Sample Control Systems

**Block Diagrams** 

Open Loop Control Systems and Gain

**Testing a Control System** 

Task: Testing a Control System

**Testing Another Control System** 

# Activity 4: The System Block Diagram and the Final Control Element Gain

Review of Gain

ProcessMotion Panel Control System

Task: Constructing the Block Diagram of the System

The Structure and Functioning of the Pump

Final Control Element Gain to the ProcessMotion System

Calculating the Final Control Element Gain

Task: Determining the Pump Gain

Task: Recording the Data

Task: Calculating the Pump Gain

#### **Activity 5: Calculating Process Gain**

Review of Gain

Defining Process Gain of the ProcessMotion System

Calculating the Process Gain Analytically

Determining the Process Gain Experimentally

Task: Determining the Process Gain

Task: Recording the Results

Task: Changing the Resistance of the Load Value

Task: Calculating the Process Gain Values

**Experiment Conclusions** 

Task: Calculating Process Gain Analytically



#### **Activity 6: First Order Systems**

Steady State Response

Dynamic Response

The Time Constant

First Order Systems

First Order System Laplace Transforms

Step Inputs

First Order System Response to a Step Input

Notes on the Time Constant

Task: Constructing a Graph of System Response to a Step Input

Task: Interpreting a System Response Graph

#### **Activity 7: The Flow System Time Constant**

Review of the Time Constant

The System Order of the Flow System

Task: Measuring the Time Constant of the Flow System Experimentally

Task: Recording the Data

### **Activity 8: Controlling the Flow System Using Open Loop Control**

**Categorizing Control Systems** 

Closed Loop Control

Open Loop Control

Controlling the Flow System Using Open Loop Control

Task: Using Open Loop Control to Control the Flow Rate into the Tank

Task: Recording the Data

Task: Controlling the Flow System with the Load Valve Open

Task: Recording Data

**Experiment Conclusions** 

Task: Investigating the Effect of an External Load on the Flow System Under Open Loop

Control

Task: Adjusting the Pump Setting

**Results and Conclusions** 



#### **Activity 9: Introduction to On-Off Control**

Open and Closed Loop Control Systems

Closed Loop Control Systems

On-Off Control Algorithm

Task: Analyzing a Control System

Applying On-Off Control

On-Off Control Using Dead Band

Tolerance

# **Activity 10: On-Off Control - Tasks**

On-Off Control

Step Inputs

Task: Step Inputs

Task: Calculating General System Information

System Behavior

Task: Calculating the System Output Over Time

The Descent of the System Response

Task: Plotting the System Descent

Investigating the Effects of Changing the Dead Band

Task: Investigating the Effects of Changing the Dead Band

#### **Activity 11: Controlling the Flow System Using On-Off Control**

Review of Open Loop Control of the Flow System

On-Off Control of the Flow System

Task: Controlling the Flow System Using On-Off Control

Analysis of the System Output

Task: Analysis of the Output Graph

Task: Completing the Experiment

Analysis of the Experiment Results

**Experiment Conclusions** 



#### **Activity 12: Proportional Control**

**Proportional Control Algorithm** 

Saturation

**Proportional Band** 

Steady State System Characteristics Under Proportional Control

Dynamic System Characteristics Under Proportional Control

### **Activity 13: First Order Systems Under Proportional Control**

**Review of Proportional Control** 

System Response to a Step Input

Task: Calculating Time Values

Task: Calculating the System Output for Kc = 0.5

Task: Calculating the System Output for Kc = 1

Task: Calculating the System Output for Kc = 2

Task: Calculating the System Output for Kc = 4

Task: Calculating the System Output for Kc = 10

# **Activity 14: Controlling the Flow System Using Proportional Control**

Materials

Review of On-Off Control of the Flow System

Proportional Control of the Flow System

Task: Controlling the Flow System Using Proportional Control

Task: Recording the Experiment Results

Task: Testing Other Set Point Values

Task: Controlling the Flow System for a New Value of Kc

Task Recording the Experiment Results

Task: Testing Other Set Point Values

**Results and Conclusions** 

Task: Controlling the Flow System with Proportional Control in the Presence

of an External Load

Task: Recording the Experiment Results

**Results and Conclusions** 

Task: Measuring the Effect of Kc on the Nature of System Response

Task: Recording the Data



# **Activity 15: Proportional Integral Control**

First Order Systems Under Proportional Control

Higher Order Systems Under Proportional Control

**Integral Control** 

**Proportional Integral Control** 

Task: Constructing a Graph of the Output of a PI Controller

How Integral Control Eliminates Offset

Disadvantages of PI Control

Applying Laplace Transform to PI Control

#### **Activity 16: Controlling the Flow System Using Proportional Integral Control**

**Review of Proportional Control** 

Controlling the Flow System Using PI Control

Task: Controlling the Flow System Using PI Control

Task: Recording the Data

Task: Controlling the Flow System with Proportional Integral Control

**Experiment 1: Results and Conclusions** 

Task: Investigating PI Control in the Presence of an External Load

Task: Recording the Data

Task: Completing the Experiments

**Experiment 2: Results and Conclusions** 

#### **Activity 17: PID Control**

**Review of Proportional Control** 

Review of Proportional Integral Control

**Derivative Control** 

Advantages of Applying a Derivative Action to a PI Controller

Proportional Integral Derivative Control

**Demonstrating PID Control** 

Task: Investigating the Effect of Changing PID Parameters

Task: The Effect of Changing the Value of Kc

Task: The Effect of Changing the Value of Ti

Task: The Effect of Changing the Value of Td



# Activity 18: Controlling the Flow System Using Proportional Integral Derivative Control

Review of P and PI Control

Control of Higher Order Systems

Review of PID Control

Task: Controlling the ProcessMotion Flow System with a PID Controller

Task: Recording Data

Task: Completing the Experiments

**Results and Conclusions** 

Task: Investigating the Effect of PID Control on a Higher Order System

Task: Adjusting the Value of Kc When Using P Control

Task: Adjusting the Value of Ti When Using PI Control

Task: Adjusting the Value of Td When Using PID Control

#### **Activity 19: Controller Selection and Design**

Designing a Control System

Stage 1: Selecting an Appropriate Control Algorithm

Stage 2: Determining the Correct Parameters

Stage 3: Fine Tuning

Setting the Parameters for a PID Control System

Task: Determining the Critical Gain Value

Task: Determining the Cycle Time

Task: Fine-tuning the PID Controller

© 2021 Intelitek Inc.

All rights reserved



# **Activity 20: Designing Controllers for the Flow System**

Review of the Controller Design Process

Designing a Controller for the Flow System: 1

Task: Experimenting with the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

Designing a Controller for the Flow System: 2

Task: Testing the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

**Experiment Results** 

Designing a Controller for the Flow System: 3

Task: Testing the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

**Experiment Results** 

#### **Post-test**