

Process Control: Temperature

Catalogue Number	77-3041-0002
Category	Process Control
Duration	15 Hours

Activity 1: Introduction to Process Control

What is Process Control?

What is a Control Mechanism?

What is a Controller?

Manual and Automatic Temperature Control Systems

The Need for Controlling Systems

Activity 2: Introduction to ProcessMotion Simulation Software

ProcessMotion Software

ProcessMotion Panel

Simulation Software

Manipulating the ProcessMotion Panel Display

Task: Running ProcessMotion and Opening Multiple Displays

Review of Process Control

Task: Running an Experiment

Output Analysis

Task: Analyzing the Output Graph

Experimenting With an Ineffective Controller

Task: Experimenting With an Ineffective Controller

Interpreting the Output Graph

Experimenting With an Effective Controller

Task: Experimenting With an Effective Controller

Interpreting the Output Graph

Activity 3: Block Diagrams and Gain

Systems and Control Systems

Sample Control Systems

Block Diagrams

Open Loop Control Systems and Gain

Testing a Control System

Task: Testing a Control System

Testing Another Control System

Activity 4: Calculating Process Gain

Review of Gain

ProcessMotion Panel Control System

Task: Constructing the Block Diagram of the System

Defining Process Gain of the ProcessMotion System

Analysis of the Tank Gain Equation

Task: Calculating the Process Gain Analytically

Calculating the Process Gain Experimentally

Task: Calculating the Process Gain Experimentally

Task: Recording the Data

Task: Adjusting the Area of the Tank

Task: Recording the Data

Task: Calculating the Process Gain

Conclusions

Activity 5: Heating Element Control

Introduction to the Heating Element

Controlling the Heating Element Using Voltage Control

Pulse Width Modulation

Activity 6: First Order Systems

Steady State Response

Dynamic Response

The Time Constant

First Order Systems

First Order System Laplace Transforms

Step Inputs

First Order System Response to a Step Input

Notes on the Time Constant

Task: Constructing a Graph of System Response to a Step Input

Task: Interpreting a System Response Graph

Activity 7: The Temperature System Time Constant

Review of the Time Constant

The System Order of the Temperature System

Deriving K and Tau for the Temperature System

Analysis of the Steady Response of the Temperature System

Analysis of the Dynamic Response of the Temperature System

Applying a Step Input

Determining the Dynamic Response of a First Order System

Task: Measuring the Time Constant of the Temperature System Experimentally

Task: Recording the Data

Determining the Time Constant of a First Order Temperature System Analytically

Task: Calculating the Time Constant Analytically

Activity 8: Controlling the Temperature System Using Open Loop Control

Categorizing Control Systems

Closed Loop Control

Open Loop Control

Controlling the Temperature System Using Open Loop Control

Task: Using Open Loop Control to Control the Temperature of Water in the Tank

Task: Recording the Data

Task: Controlling the Temperature System With a Larger Tank Surface Area

Task: Recording the Data Experiment Conclusions

Activity 9: Introduction to On-Off Control

Open and Closed Loop Control Systems

Closed Loop Control Systems

On-Off Control Algorithm

Task: Analyzing a Control System

Applying On-Off Control

On-Off Control Using Dead Band

Tolerance

Activity 10: On-Off Control - Tasks

On-Off Control

Step Inputs

Task: Step Inputs

Task: Calculating General System Information

System Behavior

Task: Calculating the System Output Over Time

The Descent of the System Response

Task: Plotting the System Descent

Investigating the Effects of Changing the Dead Band

Task: Investigating the Effects of Changing the Dead Band

Activity 11: Controlling the Temperature System Using On-Off Control

Review of Open Loop Control of the Temperature System

On-Off Control of the Temperature System

Task: Controlling the Temperature System Using On-Off Control

Analysis of the System Output

Task: Analysis of the Output Graph

Task: Completing the Experiment

Analysis of the Experiment Results

Activity 12: Proportional Control

Proportional Control Algorithm

Saturation

Proportional Band

Steady State System Characteristics Under Proportional Control

Dynamic System Characteristics Under Proportional Control

Activity 13: First Order Systems Under Proportional Control

Review of Proportional Control

System Response to a Step Input

Task: Calculating Time Values

Task: Calculating the System Output for Kc = 0.5

Task: Calculating the System Output for Kc = 1

Task: Calculating the System Output for Kc = 2

Task: Calculating the System Output for Kc = 4

Task: Calculating the System Output for Kc = 10

Activity 14: Controlling the Temperature System Using Proportional Control

Review of On-Off Control of the Temperature System

Proportional Control of the Temperature System

Task: Controlling the Temperature System Using Proportional Control

Task: Recording the Experiment Results

Task: Completing the Table

Results and Conclusions

Activity 15: Proportional Integral Control

First Order Systems Under Proportional Control

Higher Order Systems Under Proportional Control

Integral Control

Proportional Integral Control

Task: Constructing a Graph of the Output of a PI Controller

How Integral Control Eliminates Offset

Disadvantages of PI Control

Applying Laplace Transform to PI Control

Activity 16: Controlling the Temperature system Using Proportional Integral Control

Review of Proportional Control

Controlling The Temperature System Using PI Control

Task: Controlling the Temperature System with PI Controller

Task: Recording the Data

Task: Completing the Experiments

Results and Conclusions

Activity 17: PID Control

Review of Proportional Control

Review of Proportional Integral Control

Derivative Control

Advantages of Applying a Derivative Action to a PI Controller

Proportional Integral Derivative Control

Demonstrating PID Control

Task: Investigating the Effect of Changing PID Parameters

Task: The Effect of Changing the Value of Kc

Task: The Effect of Changing the Value of Ti

Task: The Effect of Changing the Value of Td

Activity 18: Controlling the Temperature System Using Proportional Integral Derivative Control

Review of P and PI Control

Control of Higher Order Systems

Review of PID Control

Task: Controlling the ProcessMotion Temperature System with a PID Controller

Task: Adjusting the Value of Td

Results and Conclusions

Task: Investigating the Effect of PID Control on a Higher Order System

Task: Adjusting the Value of Kc When Using P Control

Task: Adjusting the Value of Ti When Using PI Control

Task: Adjusting the Value of Td When Using PID Control

Activity 19: Controller Selection and Design

Designing a Control System

Stage 1: Selecting an Appropriate Control Algorithm

Stage 2: Determining the Correct Parameters

Stage 3: Fine Tuning

Setting the Parameters for a PID Control System

Task: Determining the Critical Gain Value

Task: Determining the Cycle Time

Task: Fine Tuning the PID Controller

Activity 20: Designing Controllers for the Temperature System

Review of the Controller Design Process

Control Algorithms

Designing a Controller for the Temperature System: 1

Task: Experimenting with the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

Designing a Controller for the Temperature System: 2

Task: Testing the Controller

Task: Examining the Controller Performance

Task: Evaluating the Controller Performance

Experiment Results

Designing a Controller for the Temperature System: 3

Task: Testing the Controller

Task: Examining the Controller Performance

Experiment Results

Post-test